ICT APPLICATIONS FOR DRR

Academy of ICT Essentials for Government Leaders ICT for Disaster Risk Management

Kiyoung KO
Director
UN APCICT

Asian Pacific Training Center for ICTD (APCICT)'s Mandate

Human and Institutional ICT capacity of ESCAP member States

APCICT's Major Activities

Capacity Building

To deepen the knowledge of policymakers and civil servants

2

Technical Assistance

Policy, strategy

3

E-learning
& Knowledge
Sharing
Platforms

Capacity Building Programmes

Policy Makers/ Gov't Officials

Women **Entrepreneurs**

Future Leaders

ACADEMY

Academy of ICT Essentials for Government Leaders WIFI

Women ICT Frontier Initiative

PRIMER

Primer Series on ICTD for Youth

Myanmar 🛨
Bhutan 🌠
Philippines

Officially integrated into the Curriculum of the Civil Service
Training Institutions

ACADEMY Academy of ICT Essentials for Government Leaders

4 Theme Categories for training programs

Introductory 3 courses

Digital Government Transformation 4 courses

Digital Society & Inclusion
5 courses

ICT for Disaster Risk Management

DRM cycle and the role of ICTs in various activities and phases

Disaster Risk is a Spatial Problem

Risk map of an urban area subject to flooding (source: RiskCity, ITC/Peters Guarin)

Geospatial Data is Important in all phases of the DRM cycle

Understanding risk

Analyzing risk

Communicating risk

ICTs can help not only to collect data, but also analyze and disseminate the outputs for effective DRM.

ICT Applications for DRM (1)

Satellite Remote Sensing:

- Earth observation satellites provides sub-meter level data with very detail information about the elements-atrisk, and also contributes in post disaster response activities.
- Communication satellites are being used in disaster preparedness activities such as early warnings and evacuation.

ICT Applications for DRM (2)

Global Navigation Satellite System (GNSS):

GNSS enabled services are being used for:

- Disaster preparedness activities monitoring of earth movements (e.g. landslides), sending early warnings to remote locations.
- Disaster response activities.

Sending Early Warnings Using GNSS

Quasi Zenith Satellite System (QZSS) is one of the Global Navigation Satellite Systems that supports short-messaging facilities for early warnings (Suzuki, 2019).

ICT Applications for DRM (3)

Geographical Information Systems (GIS)

- Used in all phases of DRM cycle
- GIS provides a platform to analyze and integrate data coming from various sources and prepare specific products for all phase of DRM.

GeoNode

☐ A geospatial content management system, a platform for the management and publication of geospatial data.

□ Bringing together mature and stable open-source software projects under a consistent and easy-touse interface, allowing non-specialized users to share data and create interactive maps

Risk Communication

ICT for Disaster Preparedness

Monitoring System

Primarily installed to increase the understanding of natural processes but can also be utilized to plan further actions.

Alarm System

Detect the dangerous process and initiate an alarm automatically, e.g., flashlights / sirens.

Warning System

Detect significant changes in the environment (as precursors for mass movements) before the event occurs.

Forecasting System

Predict the level of danger based on indicators at regional scale and regular intervals.

Nowcasting System

Predict the level of hazard based on near real time data.

Example: Alert and Evacuation

On your screen: ShakeAlert

- Real-time tracking of seismic waves from quake's epicenter.
- 2 Real-time tracking of the fault rupture (updates intensity).
- Your current location tracked by GPS.
- Seconds remaining before seismic waves reach you.
- 5 Expected intensity of quake at your current location.
- 6 Estimated magnitude of quake.
- Intensity scale.

Alerting:

In California, the ShakeAlert App has been developed. A user of ShakeAlert receives a message on the screen.

- The message alerts the user to how many seconds before the shaking waves arrive at their location and the expected intensity of shaking at that site.
- The warning message also displays a map with the location of the epicenter, the magnitude of the quake, and the current position of the P and S waves.

Example of an app for immediate earthquake warning: https://www.usgs.gov/natural-hazards/earthquake-hazards/early-warning

Example: Flood Emergency Response

A dynamic emergency response maps in response to the 2017 Sri Lanka floods. The data viewer combines satellite imagery with real-life photographs and incorporates river water levels, and data on loss and fatalities to provide an overview of the extent of the floods.

Emergency Response Data Portal

Sri Lanka Flood Story Map

Example: Earthquake Damage Assessment

Earthquake damage assessment using optical remote sensing imagery. The Haiti case study (Ajmar et al., 2010).

(Source: Google 2010)

Mainstreaming Gender into DRR

ICT has changed the way, and how we communicate, how we access and share information.

If ICT can be used in a gender sensitive way, ICT can help narrowing the economic and social gaps between women and men.

UN ESCAP's APDR 2019: Technological innovations for smart resilience

Global Google Public Alerts program (Big Data and Machine Learning)

Al-assisted flood predictions

All and big data to create better forecasting models. A variety of elements—from historical events, to river level readings, to the terrain and elevation of a specific area—feed into these models.

It <u>generates maps and runs up to hundreds of thousands of</u>
<u>simulations in each location to accurately predict</u> not only when and where a flood might occur, but the severity of the event as well.

THANK YOU

www.unapcict.org/

www.facebook.com/UNAPCICT

